Reformulations in Mathematical Programming: A Computational Approach
نویسندگان
چکیده
Mathematical programming is a language for describing optimization problems; it is based on parameters, decision variables, objective function(s) subject to various types of constraints. The present treatment is concerned with the case when objective(s) and constraints are algebraic mathematical expressions of the parameters and decision variables, and therefore excludes optimization of black-box functions. A reformulation of a mathematical program P is a mathematical program Q obtained from P via symbolic transformations applied to the sets of variables, objectives and constraints. We present a survey of existing reformulations interpreted along these lines, some example applications, and describe the implementation of a software framework for reformulation and optimization.
منابع مشابه
Applications of Reformulations in Mathematical Programming
Mathematical programming is a technique that can be used to solve real-world optimization problems, where one wants to maximize, or minimize, an objective function subject to some constraints on the decision variables. The key features of mathematical programming are the creation of a model for describing the problem (the so called formulation), and the implementation of efficient algorithms to...
متن کاملSolving a new mathematical model for cellular manufacturing system: A fuzzy goal programming approach
A fuzzy goal programming-based approach is used to solve a proposed multi-objective linear programming model and simultaneously handle two important problems in cellular manufacturing systems, viz. cell formation and layout design. Considerations of intra-cell layout, the intra-cell material handling can be calculated exactly. The advantages of the proposed model are considering machining cos...
متن کاملReformulations in Mathematical Programming: Definitions and Systematics
A reformulation of a mathematical program is a formulation which shares some properties with, but is in some sense better than, the original program. Reformulations are important with respect to the choice and efficiency of the solution algorithms; furthermore, it is desirable that reformulations can be carried out automatically. Reformulation techniques are very common in mathematical programm...
متن کاملSolving Bilevel Mixed Integer Program by Reformulations and Decomposition
In this paper, we study bilevel mixed integer programming (MIP) problem and present a novel computing scheme based on reformulations and decomposition strategy. By converting bilevel MIP into a constrained mathematical program, we present its single-level reformulations that are friendly to perform analysis and build insights. Then, we develop a decomposition algorithm based on column-and-const...
متن کاملSolving Bilevel Mixed Integer Program by Reformulations and Decomposition
In this paper, we study bilevel mixed integer programming (MIP) problem and present a novel computing scheme based on reformulations and decomposition strategy. By converting bilevel MIP into a constrained mathematical program, we present its single-level reformulations that are friendly to perform analysis and build insights. Then, we develop a decomposition algorithm based on column-and-const...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009